
A Genetic Algorithm for Text Classification
Rule Induction

Adriana Pietramala1, Veronica L. Policicchio1, Pasquale Rullo1,2,
and Inderbir Sidhu3

1 University of Calabria Rende - Italy
{a.pietramala,policicchio,rullo}@mat.unical.it

2 Exeura s.r.l. Rende, Italy
3 Kenetica Ltd Chicago, IL-USA

isidhu@computer.org

Abstract. This paper presents a Genetic Algorithm, called Olex-GA,
for the induction of rule-based text classifiers of the form “classify doc-
ument d under category c if t1 ∈ d or ... or tn ∈ d and not (tn+1 ∈ d
or ... or tn+m ∈ d) holds”, where each ti is a term. Olex-GA relies on
an efficient several-rules-per-individual binary representation and uses
the F -measure as the fitness function. The proposed approach is tested
over the standard test sets Reuters-21578 and Ohsumed and compared
against several classification algorithms (namely, Naive Bayes, Ripper,
C4.5, SVM). Experimental results demonstrate that it achieves very good
performance on both data collections, showing to be competitive with
(and indeed outperforming in some cases) the evaluated classifiers.

1 Introduction

Text Classification is the task of assigning natural language texts to one or more
thematic categories on the basis of their contents.

A number of machine learning methods have been proposed in the last few
years, including k -nearest neighbors (k -NN), probabilistic Bayesian, neural net-
works and SVMs. Overviews of these techniques can be found in [13, 20].

In a different line, rule learning algorithms, such as [2, 3, 18], have become
a successful strategy for classifier induction. Rule-based classifiers provide the
desirable property of being readable and, thus, easy for people to understand
(and, possibly, modify).

Genetic Algorithms (GA’s) are stochastic search methods inspired to the bi-
ological evolution [7, 14]. Their capability to provide good solutions for classical
optimization tasks has been demonstrated by various applications, including
TSP [9, 17] and Knapsack [10]. Rule induction is also one of the application
fields of GA’s [1, 5, 15, 16]. The basic idea is that each individual encodes a
candidate solution (i.e., a classification rule or a classifier), and that its fitness
is evaluated in terms of predictive accuracy.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 188–203, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Genetic Algorithm for Text Classification Rule Induction 189

In this paper we address the problem of inducing propositional text classifiers
of the form

c ← (t1 ∈ d ∨ · · · ∨ tn ∈ d) ∧ ¬(tn+1 ∈ d ∨ · · · ∨ tn+m ∈ d)

where c is a category, d a document and each ti a term (n-gram) taken from a
given vocabulary. We denote a classifier for c as above by Hc(Pos, Neg), where
Pos = {t1, · · · , tn} and Neg = {tn+1 · · · tn+m}. Positive terms in Pos are used to
cover the training set of c, while negative terms in Neg are used to take precision
under control.

The problem of learning Hc(Pos, Neg) is formulated as an optimization task
(hereafter referred to as MAX-F) aimed at finding the sets Pos and Neg which
maximize the F -measure when Hc(Pos, Neg) is applied to the training set.
MAX-F can be represented as a 0-1 combinatorial problem and, thus, the GA ap-
proach turns out to be a natural candidate resolution method. We call Olex-GA
the genetic algorithm designed for the task of solving problem MAX-F.

Thanks to the simplicity of the hypothesis language, in Olex-GA an individ-
ual represents a candidate classifier (instead of a single rule). The fitness of an
individual is expressed in terms of the F -measure attained by the correspond-
ing classifier when applied to the training set. This several-rules-per-individual
approach (as opposed to the single-rule-per-individual approach) provides the
advantage that the fitness of an individual reliably indicates its quality, as it is
a measure of the predictive accuracy of the encoded classifier rather than of a
single rule.

Once the population of individuals has been suitably initialized, evolution
takes place by iterating elitism, selection, crossover and mutation, until a pre-
defined number of generations is created.

Unlike other rule-based systems (such as Ripper) or decision tree systems
(like C4.5) the proposed method is a one-step learning algorithm which does
not need any post-induction optimization to refine the induced rule set. This is
clearly a notable advantage, as rule set-refinement algorithms are rather complex
and time-consuming tasks.

The experimentation over the standard test sets Reuters-21578 and Ohsu-

med confirms the goodness of the proposed approach: on both data collections,
Olex-GA showed to be highly competitive with some of the top-performing
learning algorithms for text categorization, notably, Naive Bayes, C4.5, Ripper
and SVM (both polynomial and rbf). Furthermore, it consistently defeated the
greedy approach to problem MAX-F we reported in [19]. In addition, Olex-GA
turned out to be an efficient rule induction method (e.g., faster than both C4.5
and Ripper).

In the rest of the paper, after providing a formulation of the learning op-
timization problem (Section 2) and proving its NP-hardness, we describe the
GA approach proposed to solve it (Section 3). Then, we present the experi-
mental results (Section 5) and provide a performance comparison with some of
the top-performing learning approaches (Section 6). Finally, we briefly discuss
the relation to other rule induction systems (Sections 7 and 8) and give the
conclusions.

190 A. Pietramala et al.

2 Basic Definitions and Problem Statement

In the following we assume the existence of:

1. a finite set C of categories, called classification scheme;
2. a finite set D of documents, called corpus ; D is partitioned into a training set

TS, a validation set and a test set ; the training set, along with the validation
set, represents the so-called seen data, used to induce the model, while the
test set represents the unseen data, used to asses performance of the induced
model;

3. a binary relationship which assigns each document d ∈ D to a number of
categories in C (ideal classification). We denote by TSc the subset of TS
whose documents belong to category c (the training set of c);

4. a set Φ = {f1, · · · , fk} of scoring functions (or feature selection functions),
such as Information Gain, Chi Square, etc. [4, 22], used for vocabulary re-
duction (we will hereafter often refer to them simply as “functions”).

A vocabulary V (k, f) over the training set TS is a set of terms (n-grams)
defined as follows: let Vc(k, f) be the set of the k terms occurring in the docu-
ments of TSc that score highest according to the scoring function f ∈ Φ; then,
V (k, f) = ∪c∈CVc(k, f), that is, V (k, f) is the union of the k best terms, accord-
ing to f , of each category of the classification scheme.

We consider a hypothesis language of the form

c ← (t1 ∈ d ∨ · · · ∨ tn ∈ d) ∧ ¬(tn+1 ∈ d ∨ · · · ∨ tn+m ∈ d) (1)

where each ti is a term taken from a given vocabulary. In particular, each term in
Pos = {t1, · · · , tn} is a positive term, while each term in Neg = {tn+1 · · · tn+m}
is a negative term. A classifier as above, denoted Hc(Pos, Neg), states the
condition “if any of the terms t1, · · · , tn occurs in d and none of the terms
tn+1, · · · , tn+m occurs in d then classify d under category c”1. That is, the oc-
currence of a positive term in a document d requires the contextual absence of
the (possibly empty) set of negative terms in order for d be classified under c2.

To assess the accuracy of a classifier for c, we use the classical notions of
Precision Prc, Recall Rec and F -measure Fc,α, defined as follows:

Prc =
a

a + b
; Rec =

a

a + e
; Fc,α =

Prc · Rec

(1 − α)Prc + αRec
(2)

Here a is the number of true positive documents w.r.t. c (i.e., the number of
documents of the test set that have correctly been classified under c), b the
number of false positive documents w.r.t. c and e the number of false negative
documents w.r.t. c. Further, in the definition of Fc,α, the parameter α ∈ [0 · · · 1]

1 It is immediate to recognize that c ← (t1 ∈ d∨· · ·∨tn ∈ d)∧¬(tn+1 ∈ d∨· · ·∨tn+m ∈
d) is equivalent to the following set of classification rules: {c ← t1 ∈ d ∧ ¬(tn+1 ∈
d) ∧ · · · ∧ ¬(tn+m ∈ d), · · · , c ← tn ∈ d ∧ ¬(tn+1 ∈ d) ∧ · · · ∧ ¬(tn+m ∈ d)}.

2 d may “satisfy” more then one; thus, it may be assigned to multiple categories.

A Genetic Algorithm for Text Classification Rule Induction 191

is the relative degree of importance given to Precision and Recall; notably, if
α = 1 then Fc,α coincides with Prc, and if α = 0 then Fc,α coincides with Rec

(a value of α = 0.5 attributes the same importance to Prc and Rec)3.
Now we are in a position to state the following optimization problem:

PROBLEM MAX-F. Let a category c ∈ C and a vocabulary V (k, f) over
the training set TS be given. Then, find two subsets of V (k, f), namely, Pos =
{t1, · · · , tn} and Neg = {tn+1, · · · , tn+m}, with Pos �= ∅, such that Hc(Pos, Neg)
applied to TS yields a maximum value of Fc,α (over TS), for a given α.

Proposition 1. Problem MAX-F is NP-hard.

Proof. We next show that the decision version of problem MAX-F is NP-
complete (i.e., it requires time exponential in the size of the vocabulary, unless
P = NP). To this end, we restrict our attention to the subset of the hypothesis
language where each rule consists of only positive terms, i.e, c ← t1 ∈ d∨· · ·∨tn ∈
d (that is, classifiers are of the form Hc(Pos, ∅)). Let us call MAX-F+ this special
case of problem MAX-F.

Given a generic set Pos ⊆ V (k, f), we denote by S ⊆ {1, · · · , p} the set of
indices of the elements of V (k, f) = {t1, · · · , tq} that are in Pos, and by Δ(ti)
the set of documents of the training set TS where ti occurs. Thus, the set of
documents classifiable under c by Hc(Pos, ∅) is D(Pos) = ∪i∈SΔ(ti). The F -
measure of this classification is

Fc,α(Pos) =
|D(Pos) ∩ TSc|

(1 − α)|TSc| + α|D(Pos)| . (3)

Now, problem MAX-F+, in its decision version, can be formulated as follows:
“∃ Pos ⊆ V (k, f) such that Fc,α(Pos) ≥ K?”, where K is a constant (let us call
it MAX-F+(D)).

Membership. Since Pos ⊆ V (k, f), we can clearly verify a YES answer of MAX-
F+(D), using equation 3, in time polynomial in the size |V (k, f)| of the vocab-
ulary.

Hardness. We define a partition of D(Pos) into the following subsets: (1) Ψ(Pos)
= D(Pos)∩TSc, i.e., the set of documents classifiable under c by Hc(Pos, ∅) that
belong to the training set TSc (true classifiable); (2) Ω(Pos) = D(Pos) \ TSc,
i.e., the set of documents classifiable under c by Hc(Pos, ∅) that do not belong
to TSc (false classifiable).

Now, it is straightforward to see that the F -measure, given by equation 3, is
proportional to the size ψ(Pos) of Ψ(Pos) and inversely proportional to the size
ω(Pos) of Ω(Pos) (just replace in equation 3 the quantities |D(Pos) ∩ TSc| by
ψ(Pos) and |D(Pos)| by ψ(Pos) + ω(Pos)). Therefore, problem MAX-F+(D)
can equivalently be stated as follows: “∃ Pos ⊆ V (k, f) such that ψ(Pos) ≥ V
and ω(Pos) ≤ C?”, where V and C are constants.
3 Since α ∈ [0 · · · 1] is a parameter of our model, we find convenient using Fc,α rather

than the equivalent Fβ = (β2+1)Prc·Rec

β2Prc+Rec
, where β ∈ [0 · · · ∞] has no upper bound.

192 A. Pietramala et al.

Now, let us restrict MAX-F+(D) to the simpler case in which terms in Pos
are pairwise disjoint, i.e., Δ(ti) ∩ Δ(tj) = ∅ for all ti, tj ∈ V (k, f) (let us call
DSJ this assumption). Next we show that, under DSJ , MAX-F+(D) coincides
with the Knapsack problem. To this end, we associate with each ti ∈ V (k, f)
two constants, vi (the value of ti) and a ci (the cost of ti) as follows:

vi = |Δ(ti) ∩ TSc|, ci = |Δ(ti) \ TSc|.

That is, the value vi (resp. cost ci) of a term ti is the number of documents
containing ti that are true classifiable (resp., false classifiable).

Now we prove that, under DSJ , the equality Σi∈Svi = ψ(Pos) holds, for any
Pos ⊆ V (k, f). Indeed:

Σi∈Svi = Σi∈S |Δ(ti)∩TSc| = |(∪i∈SΔ(ti))∩TSc| = |(D(Pos)∩TSc| = ψ(Pos).

To get the first equality above we apply the definition of vi; for the second, we
exploit assumption DSJ ; for the third and the fourth we apply the definitions
of D(Pos) and ψ(Pos), respectively.

In the same way as for vi, the equality Σi∈Sci = ω(Pos) can be easily drawn.
Therefore, by replacing ψ(Pos) and ω(Pos) in our decision problem, we get

the following new formulation, valid under DSJ : “∃ Pos ⊆ V (k, f) such that
Σi∈Svi ≥ V and Σi∈Sci ≤ C?”. That is, under DSJ , MAX-F+(D) is the Knap-
sack problem – a well known NP-complete problem. Therefore, MAX-F+(D)
under DSJ is NP-complete. It turns out that (the general case of) MAX-F+(D)
(which is at least as complex as MAX-F+(D) under DSJ) is NP-hard and, thus,
the decision version of problem MAX-F+ is NP-hard as well. It turns out that
the decision version of problem MAX-F is NP-hard.

Having proved both membership (in NP) and hardness, we conclude that the
decision version of problem MAX-F is NP-complete.

A solution of problem MAX-F is a best classifier for c over the training set TS,
for a given vocabulary V (f, k). We assume that categories in C are mutually
independent, i.e., the classification results of a given category are not affected
by the results of any other. It turns out that we can solve problem MAX-F for
that category independently on the others. For this reason, in the following, we
will concentrate on a single category c ∈ C.

3 Olex-GA: A Genetic Algorithm to Solve MAX-F

Problem MAX-F is a combinatorial optimization problem aimed at finding a
best combination of terms taken from a given vocabulary. That is, MAX-F is
a typical problem for which GA’s are known to be a good candidate resolution
method.

A GA can be regarded as composed of three basic elements: (1) A population,
i.e., a set of candidate solutions, called individuals or chromosomes, that will
evolve during a number of iterations (generations); (2) a fitness function used to

A Genetic Algorithm for Text Classification Rule Induction 193

assign a score to each individual of the population; (3) an evolution mechanism
based on operators such as selection, crossover and mutation. A comprehensive
description of GA can be found in [7].

Next we describe our choices concerning the above points.

3.1 Population Encoding

In the various GA-based approaches to rule induction used in the literature (e.g.,
[5, 15, 16]), an individual of the population may either represent a single rule or
a rule set. The former approach (single-rule-per-individual) makes the individual
encoding simpler, but the fitness of an individual may not be a meaningful indica-
tor of the quality of the rule. On the other hand, the several-rules-per-individual
approach, where an individual may represent an entire classifier, requires a more
sophisticated encoding of individuals, but the fitness provides a reliable indi-
cator. So, in general, there is a trade-off between simplicity of encoding and
effectiveness of the fitness function.

Thanks to the structural simplicity of the hypothesis language, in our model
an individual encodes a classifier in a very natural way, thus combining the
advantages of the two aforementioned approaches. In fact, an individual is simply
a binary representation of the sets Pos and Neg of a classifier Hc(Pos, Neg).

Our initial approach was that of representing Hc(Pos, Neg) through an indi-
vidual consisting of 2 · |V (k, f)| bits, half for the terms in Pos, and half for the
terms in Neg (recall that both Pos and Neg are subsets of V (k, f)). This how-
ever proved to be very ineffective (and inefficient), as local solutions representing
classifiers with hundreds of terms were generated.

More effective classifiers were obtained by restricting the search of both posi-
tive and negative terms, based on the following simple observations: (1) scoring
functions are used to assess goodness of terms w.r.t. a given category; hence,
it is quite reasonable searching positive terms for c within Vc(k, f), i.e., among
the terms that score highest for c according to a given function f ; (2) the role
played by negative terms in the training phase is that of avoiding classification
of documents (of the training set) containing some positive term, but falling
outside the training set TSc of c.

Based on the above remarks, we define the following subsets Pos∗ and Neg∗
of V (k, f):

– Pos∗ = Vc(k, f), i.e., Pos∗ is the subset of V (k, f) consisting of the k terms
occurring in the documents of the training set TSc of c that score highest
according to scoring function f ; we say that ti ∈ Pos∗ is a candidate positive
term of c over V (k, f);

– Neg∗ = {t ∈ V (k, f) | (∪tj∈Pos∗Δ(tj)\TSc)∩Δ(t) �= ∅}, where Δ(tj) ⊆ TS
(resp. Δ(t) ⊆ TS) is the set of documents of TS containing term tj (resp.
t); we say that ti ∈ Neg∗ is a candidate negative term of c over V (k, f).
Intuitively, a candidate negative term is one which occurs in a document
containing some candidate positive term and not belonging to the training
set TSc of c.

194 A. Pietramala et al.

Now, we represent a classifier Hc(Pos, Neg) over V (k, f) as a chromosome K
made of |Pos ∗ | + |Neg ∗ | bits. The first |Pos ∗ | bits of K, denoted K+, are
used to represent the terms in Pos, and the remaining |Neg ∗ |, denoted K−, to
represent the terms in Neg. We denote the bit in K+ (resp. K−) representing
the candidate positive (resp. negative) term ti as K+[ti] (resp. K−[ti]). Thus, the
value 0-1 of K+[ti] (resp. K−[ti]) denotes whether ti ∈ Pos∗ (resp. ti ∈ Neg∗)
is included in Pos (resp. Neg) or not.

A chromosome K is legal if there is no term ti ∈ Pos ∗ ∩Neg∗ such that
K+[ti] = K−[ti] = 1 (that is, ti cannot be at the same time a positive and a
negative term)4.

3.2 Fitness Function

The fitness of a chromosome K, representing Hc(Pos, Neg), is the value of the
F -measure resulting from applying Hc(Pos, Neg) to the training set TS. This
choice naturally follows from the formulation of problem MAX-F. Now, if we
denote by D(K) ⊆ TS the set of all documents containing any positive term in
Pos and no negative term in Neg, i.e.,

D(K) = ∪t∈PosΔ(t) \ ∪t∈NegΔ(t),

starting from the definition of Fc,α, after some algebra, we obtain the following
formula for Fc,α:

Fc,α(K) =
|D(K) ∩ TSc|

(1 − α)|TSc| + α|D(K)| .

3.3 Evolutionary Operators

We perform selection via the roulette-wheel method, and crossover by the uni-
form crossover scheme. Mutation consists in the flipping of each single bit with a
given (low) probability. In order not to lose good chromosomes, we apply elitism,
thus ensuring that the best individuals of the current generation are passed to
the next one without being altered by a genetic operator. All the above operators
are described in [7].

3.4 The Genetic Algorithm

A description of Olex-GA is sketched in Figure 1. First, the sets Pos∗ and Neg∗
of candidate positive and negative terms, respectively, are computed from the
input vocabulary V (k, f). After population has been initialized, evolution takes
place by iterating elitism, selection, crossover and mutation, until a pre-defined
number n of generations is created. At each step, a repair operator ρ, aimed
at correcting possible illegal individuals generated by crossover/mutation, is
applied. In particular, if K is an illegal individual with K+[t] = K−[t] = 1,
4 Note that the classifier encoded by an illegal individual is simply redundant, as it

contains a “dummy” rule of the form c ← t ∈ d, · · · ¬(t ∈ d), · · ·.

A Genetic Algorithm for Text Classification Rule Induction 195

Algorithm Olex-GA

Input: vocabulary V (f, k) over the training set TS; number n of generations;
Output: “best” classifier Hc(Pos,Neg) of c over TS;

- begin
- Evaluate the sets of candidate positive and negative terms from V (f, k);
- Create the population oldPop and initialize each chromosome;
- Repeat n times
- Evaluate the fitness of each chromosome in oldPop;
- newPop = ∅;
- Copy in NewPop the best r chromosomes of oldPop (elitism - r is

determined on the basis of the elitism percentage)
- While size(newPop) < size(oldPop)
- select parent1 and parent2 in oldPop via roulette wheel
- generate kid1, kid2 through crossover(parent1, parent2)
- apply mutation, i.e., kid1 = mut(kid1) and kid2 = mut(kid2)
- apply the repair operator ρ to both kid1 and kid2;
- add kid1 and kid2 to newPop;
- end-while
- oldPop = newPop;
- end-repeat;
- Select the best chromosome K in oldPop;
- Eliminate redundancies from K;
- return the classifier Hc(Pos,Neg) associated with K.

Fig. 1. Evolutionary Process for category c

the application of ρ to K simply set K+[t] = 0 (thus, the redundant rule
c ← t ∈ d, · · · ¬(t ∈ d), · · · is removed from the encoded classifier). After it-
eration completes, the elimination of redundant bits/terms from the best chro-
mosome/classifier K is performed. A bit K[t] = 1 is redundant in a chromosome
K, representing Hc(Pos, Neg), if the chromosome K ′ obtained from K by setting
K[t] = 0 is such that Fc,α(K) = Fc,α(K ′). This may happen if either t ∈ Pos
and Δ(t) ⊆ ∪t′∈(Pos−{t})Δ(t′) (i.e., t does not provide any contribution to the
classification of new documents) or t ∈ Neg and Δ(t) ∩ ∪t′∈PosΔ(t′) = ∅ (i.e., t
does not contribute to remove any misclassified document).

4 Learning Process

While Olex-GA is the search of a “best” classifier for category c over the training
set, for a given input vocabulary, the learning process is the search of a “best”
classifier for c over the validation set, for all input vocabularies. More precisely,
the learning process proceeds as follows:

196 A. Pietramala et al.

– Learning: for each input vocabulary
• Evolutionary Process: execute a predefined number of runs of Olex-GA

over the training set, according to Figure 1;
• Validation: run over the validation set the best chromosome/classifier

generated by Olex-GA;
– Testing: After all runs have been executed, pick up the best classifier (over

the validation set), and assess its accuracy over the test set (unseen data).

The output of the learning process is assumed to be the “best classifier” of c.

5 Experimentation

5.1 Benchmark Corpora

We have experimentally evaluated our method using both the Reuters-21578

[12] and and the Ohsumed [8] test collections.
The Reuters-21578 consists of 12,902 documents. We have used the Mod-

Apté split, in which 9,603 documents are selected for training (seen data) and
the other 3,299 form the test set (unseen data). Of the 135 categories of the
TOPICS group, we have considered the 10 with the highest number of positive
training examples (in the following, we will refer to this subset as R10). We
remark that we used all 9603 documents of the training corpus for the learning
phase, and performed the test using all 3299 documents of the test set (including
those not belonging to any category in R10).

The second data set we considered is Ohsumed, in particular, the collection
consisting of the first 20,000 documents from the 50,216 medical abstracts of
the year 1991. Of the 20,000 documents of the corpus, the first 10,000 were used
as seen data and the second 10,000 as unseen data. The classification scheme
consisted of the 23 MeSH diseases.

5.2 Document Pre-processing

Preliminarily, documents were subjected to the following pre-processing steps:
(1) First, we removed all words occurring in a list of common stopwords, as well
as punctuation marks and numbers; (2) then, we extracted all n-grams, defined
as sequences of maximum three words consecutively occurring within a document
(after stopword removal)5; (3) at this point we have randomly split the set of
seen data into a training set (70%), on which to run the GA, and a validation set
(30%), on which tuning the model parameters. We performed the split in such
a way that each category was proportionally represented in both sets (stratified
holdout); (4) finally, for each category c ∈ C, we scored all n-grams occurring in
the documents of the training set TSc by each scoring function f ∈ {CHI, IG},
where IG stands for Information Gain and CHI for Chi Square [4, 22].

5 Preliminary experiments showed that n-grams of length ranging between 1 and 3
perform slightly better than single words.

A Genetic Algorithm for Text Classification Rule Induction 197

Table 1. Best classifiers for categories in R10 and micro-averaged performance

Cat. Input Training Test Classifier
(α = 0.5) (GA)
f k F -meas F -meas BEP #pos #neg

earn CHI 80 93.91 95.34 95.34 36 9
acq CHI 60 83.44 87.15 87.49 22 35
mon-fx CHI 150 79.62 66.47 66.66 33 26
grain IG 60 91.05 91.61 91.75 9 8
crude CHI 70 85.08 77.01 77.18 26 14
trade IG 80 76.77 61.80 61.81 20 11
interest CHI 150 73.77 64.20 64.59 44 23
wheat IG 50 92.46 89.47 89.86 8 6
ship CHI 30 87.88 74.07 74.81 17 33
corn IG 30 93.94 90.76 91.07 4 12

μ-BEP 86.35 86.40

5.3 Experimental Setting

We conducted a number of experiments for inducing the best classifiers for both
Reuters-21578 and Ohsumed according to the learning process described in
Section 4. To this end, we used different input vocabularies V (k, f), with k ∈
{10, 20, · · · , 90, 100, 150, 200} and f ∈ {CHI, IG}. For each input vocabulary,
we ran Olex-GA three times. The parameter α of the fitness function Fc,α was
set to 0.5 for all the experiments (thus attributing equal importance to Precision
and Recall).

In all cases, the population size has been held at 500 individuals, the number
of generations at 200, the crossover rate at 1.0, the mutation rate at 0.001 and
the elitism probability at 0.2.

For each chromosome K in the population, we initialized K+ at random,
while we set K−[t] = 0, for each t ∈ Neg∗ (thus, K initially encodes a classifier
Hc(Pos, ∅) with no negative terms).

Initialization, as well as all the above mentioned GA parameters, have been
empirically set based on a preliminary experimentation.

5.4 Experimental Results

The first data set we considered is Reuters-21578 . Table 1 shows the perfor-
mance of the best classifiers for the categories of R10. Here, for each classifier,
we report: (1) the values of f and k of the input vocabulary V (f, k); (2) the
F -measure over the training set (i.e., the fitness of the best individual); (3) F-
measure and Break Even Point (BEP) over the test set (“Test”); (4) the number
of positive and negative terms occurring in the classifier (“Classifier”).

From results of Table 1 it clearly appears that the evolutionary model is sensi-
tive to the input parameters, as each category achieves its maximum performance
with different values of k and f . For an instance, the best classifier of category

198 A. Pietramala et al.

“earn” is learned from a vocabulary V (k, f) where k = 80 and f = CHI; the
respective F -measure and breakeven point are both 95.34. Looking at the last
row, we see that the micro-averaged values of F -measure and BEP over the
test set are equal to 86.35 and 86.40, respectively. Finally, looking at the last
two columns labelled “classifier”, we see that the induced classifiers are rather
compact: the maximum number of positive terms is 44 (“interest”), and the
minimum is 4 (“corn”); likewise, the maximum number of negative terms is 35
(“acq”) and the minimum is 6 (“wheat”).

As an example, the classifier Hc(Pos, Neg) for “corn” has

Pos = {“corn”, “maize”, “tonnes maize”, “tonnes corn”}

Neg = {“jan”, “qtr”, “central bank”, “profit”, “4th”, “bonds”, “pact”,

“offering”, “monetary”, “international”, “money”, “petroleum”}.

Thus, Hc(Pos, Neg) is of the following form:

c ← “corn” ∨ · · · ∨ “tonnes corn” ∧ ¬ (“jan” ∨ · · · ∨ “petroleum”).

To show the sensitivity of the model to parameter settings, in Table 2 we
report the F-measure values (on the validation set) for category “corn” obtained
by using different values for φ and ν. As we can see, the performance of the
induced classifiers varies from a minimum of 84.91 to a maximum of 93.58 (note
that, for both functions, the F -measure starts decreasing for ν > 50, i.e., a
reduction of the vocabulary size provides a benefit in terms of performance [22]).

Table 2. Effect of varying φ and ν on the F-measure for category “corn”

ν

φ 10 50 100 150 200
CHI 90.74 91.00 88.7 88.68 84.91
IG 92.04 93.58 91.59 91.59 89.09

The second data set we considered is Ohsumed . In Table 3 we provide the
best performance for the ten most frequent Mesh categories and micro-averaged
performance over all 23. In particular, micro-averaged F -measure and BEP (over
the test set) are both equal to 62.30. Also in this case, with a few exceptions,
classifiers are rather compact.

5.5 Time Efficiency

Experiments have been run on a 2.33 GHz Xeon 4 Gb RAM. The average ex-
ecution time of the evolutionary process of Figure 1 is around 10 seconds per
category for both data sets (recall that in both cases the population is made of
500 individuals which evolve for 200 generations).

A Genetic Algorithm for Text Classification Rule Induction 199

Table 3. Best classifiers for the ten most frequent MeSH “diseases” categories of
Ohsumed and micro-averaged performance over all 23

Cat. Input Training Test Classifier
(α = 0.5) (GA)

name f k F -meas F -meas BEP #pos #neg
C23 CHI 100 54.93 50.67 51.39 25 13
C14 CHI 70 79.67 75.46 75.61 32 7
C04 CHI 100 80.79 80.18 80.36 33 7
C10 CHI 70 61.63 54.60 54.65 24 25
C06 IG 100 73.51 68.69 68.80 95 3
C21 CHI 200 79.17 62.11 62.22 113 6
C20 IG 80 75.64 70.98 71.12 35 4
C12 CHI 100 81.59 73.60 74.28 55 7
C08 IG 30 69.63 63.99 64.07 18 24
C01 CHI 100 76.14 64.32 64.46 93 3

avg-BEP (top 10) 66.46 66.96
μ-BEP (all 23) 62.30 62.30

6 Performance Comparisons

In this section we compare Olex-GA with four classical learning algorithms: SVM
(both, polynomial and radial basis function - rbf), Ripper (with two optimization
steps), C4.5 and Naive Bayes (NB). Further, we make a comparison with the
greedy approach to problem MAX-F we presented in our previous work [19]
(hereafter called Olex-Greedy).

To determine the performance of the above algorithms (apart from Olex-
Greedy) we utilized the Weka library of machine learning algorithms, version
3.5.6 [21].

In order to make results really comparable, documents of both corpora were
preliminarily pre-processed exactly as described in Subsection 5.2. Then, for each
of the above learners, we carried out a number of experiments over the training
set, using the validation set for tuning the model parameters. In particular, we
ran all methods with vocabularies consisting of 500, 1000, 2000, 5000 terms. For
each vocabulary, polynomial SVM was run with degree d ranging from 1 to 5,
while rbf SVM was executed with variance γ ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}. Once
completed all experiments, we selected the best classifier (over the validation
set) of each category, i.e., the one with the maximum value of the F -measure.
Finally, we used the test set to evaluate the performance of the best classifiers
and the micro-averaged accuracy measures6.

Reuters-21578 . The performance results of the tested algorithms are re-
ported in Table 4. In particular, for each algorithm, we provide the BEP over
6 To attain more reliable estimations of the differences in predictive accuracy of differ-

ent methods, n-fold cross-validation along with statistical significance tests should
be performed. We envision this task as part of our future work.

200 A. Pietramala et al.

Table 4. Recall/Precision breakeven points on R10

Category NB C4.5 Ripper SVM Olex
poly rbf Greedy GA

earn 96.61 95.77 95.31 97.32 96.57 93.13 95.34
acq 90.29 85.59 86.63 90.37 90.83 84.32 87.49
money 56.67 63.08 62.94 72.89 68.22 68.01 66.66
grain 77.82 89.69 89.93 92.47 88.94 91.28 91.75
crude 78.84 82.43 81.07 87.82 86.17 80.84 77.18
trade 57.90 70.04 75.82 77.77 74.14 64.28 61.81
interest 61.71 52.93 63.15 68.16 58.71 55.96 64.59
wheat 71.77 91.46 90.66 86.13 89.25 91.46 89.86
ship 68.65 71.92 75.91 82.66 80.40 78.49 74.81
corn 59.41 86.73 91.79 87.16 84.74 89.38 91.07
μ-BEP 82.52 85.82 86.71 89.91 88.80 84.80 86.40
learning times (min) 0.02 425 800 46 696 2.30 116

the test set of each category in R10, the micro-avg BEP and the overall learning
time. Concerning predictive accuracy, with a μ-BEP of 86.40, our method sur-
passes Naive Bayes (82.52), which shows the worst behavior, and Olex-Greedy
(84.80); is competitive with C4.5 (85.82) and Ripper (86.71), while performs
worse than both SVM’s (poly = 89.91, rbf = 88.80). Concerning efficiency, NB
(0.02 min) and Olex-Greedy (2.30 min) are by far the fastest methods. Then
poly SVM (46 min) and Olex-GA (116 min), followed at some distance by C4.5
(425 min), rbf SVM (696 min) and Ripper (800).

Ohsumed . As we can see from Table 5, with a μ-BEP = 62.30, the proposed
method is the top-performer. On the other side, C4.5 shows to be the worst

Table 5. Recall/Precision breakeven points on the ten most frequent MeSH diseases
categories of Ohsumed and micro-averaged performance over all 23

Category NB C4.5 Ripper SVM Olex
poly rbf Greedy GA

C23 47.59 41.93 35.01 45.00 44.21 47.32 51.39
C14 77.15 73.79 74.16 73.81 75.34 74.52 75.61
C04 75.71 76.22 80.05 78.18 76.65 77.78 80.36
C10 45.96 44.88 49.73 52.22 51.54 54.72 54.65
C06 65.19 57.47 64.99 63.18 65.10 63.25 68.80
C21 54.92 61.68 61.42 64.95 62.59 61.62 62.22
C20 68.09 64.72 71.99 70.23 66.39 67.81 71.12
C12 63.04 65.42 70.06 72.29 64.78 67.82 74.28
C08 57.70 54.29 63.86 60.40 55.33 61.57 64.07
C01 58.36 48.89 56.05 43.05 52.09 55.59 64.46
avg-BEP (top 10) 61.37 58.92 62.73 62.33 61.40 62.08 66.69
μ-BEP (all 23) 57.75 55.14 59.65 60.24 59.57 59.38 62.30
learning times (min) 0.04 805 1615 89 1100 6 249

A Genetic Algorithm for Text Classification Rule Induction 201

performer (55.14) (so confirming the findings of [11]). Then, in the order, Naive
Bayes (57.75), rbf SVM (59.57), Ripper (59.65), polynomial SVM (60.24) and
Olex-Greedy (61.57). As for time efficiency, the Ohsumed results essentially
confirm the hierarchy coming out from the Reuters-21578 .

7 Olex-GA vs. Olex-Greedy

One point that is noteworthy is the relationship between Olex-Greedy and Olex-
GA, in terms of both predictive accuracy and time efficiency.

Concerning the former, we have seen that Olex-GA consistently beats Olex-
Greedy on both data sets. This confirms Freitas’ findings [6], according to
which effectiveness of GA’s in rule induction is a consequence of their inher-
ent ability to cope with attribute interaction as, thanks to their global search
approach, more attributes at a time are modified and evaluated as a whole.
This in contrast with the local, one-condition-at-a-time greedy rule generation
approach.

On the other hand, concerning time efficiency, Olex-Greedy showed to be much
faster than Olex-GA. This should not be surprising, as the greedy approach,
unlike GA’s, provides a search strategy which straight leads to a suboptimal
solution.

8 Relation to Other Inductive Rule Learners

Because of the computational complexity of the learning problem, all real sys-
tems employ heuristic search strategies which prunes vast parts of the hypothe-
sis space. Conventional inductive rule learners (e.g, RIPPER [3]) usually adopt,
as their general search method, a covering approach based on a separate-and-
conquer strategy. Starting from an empty rule set, they learn a set of rules, one
by one. Different learners essentially differ in how they find a single rule. In RIP-
PER, the construction of a single rule is a two-stage process: a greedy heuristics
constructs an initial rule set (IREP*) and, then, one or more optimization phases
improve compactness and accuracy of the rule set.

Also decision tree techniques, e.g., C4.5 [18], rely on a two-stage process. After
the decision tree has been transformed into a rule set, C4.5 implements a pruning
stage which requires more steps to produce the final rule set - a rather complex
and time consuming task.

In contrast, Olex-GA, like Olex-Greedy and other GA-based approaches (e.g.,
[5]), relies on a single-step process whereby an “optimal” classifier, i.e., one
consisting of few high-quality rules, is learned. Thus, no pruning strategy is
needed, with a great advantage in terms of efficiency. This may actually account
for the time results of Tables 4 and 5, which show the superiority of Olex-GA
w.r.t. both C4.5 and Ripper.

202 A. Pietramala et al.

9 Conclusions

We have presented a Genetic Algorithm, Olex-GA, for inducing rule-based text
classifiers of the form ”if a document d includes either term t1 or ... or term tn,
but not term tn+1 and ... and not term tn+m, then classify d under category c”.

Olex-GA relies on a simple binary representation of classifiers (several-rules-
per-individual approach) and uses the F -measure as the fitness function. One
design aspect related to the encoding of a classifier Hc(Pos, Neg) was concerned
with the choice of the length of individuals (i.e., the size of the search space).
Based on preliminary experiments, we have restricted the search of Pos and Neg
to suitable subsets of the vocabulary (instead of taking it entirely), thus getting
more effective and compact classifiers.

The experimental results obtained on the standard data collections Reuters-

21578 and Ohsumed show that Olex-GA quickly converges to very accurate
classifiers. In particular, in the case of Ohsumed , it defeats all the other eval-
uated algorithms. Further, on both data sets, Olex-GA consistently beats Olex-
Greedy. As for time efficiency, Olex-GA is slower than Olex-Greedy but faster
than the other rule learning methods (i.e., Ripper and C4.5).

We conclude by remarking that we consider the experiments reported in this
paper somewhat preliminary, and feel that performance can further be improved
through a fine-tuning of the GA parameters.

References

1. Alvarez, J.L., Mata, J., Riquelme, J.C.: Cg03: An oblique classification system
using an evolutionary algorithm and c4.5. International Journal of Computer, Sys-
tems and Signals 2(1), 1–15 (2001)

2. Apté, C., Damerau, F.J., Weiss, S.M.: Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems 12(3), 233–251 (1994)

3. Cohen, W.W., Singer, Y.: Context-sensitive learning methods for text categoriza-
tion. ACM Transactions on Information Systems 17(2), 141–173 (1999)

4. Forman, G.: An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research 3, 1289–1305 (2003)

5. Freitas, A.A.: A genetic algorithm for generalized rule induction. In: Advances in
Soft Computing-Engineering Design and Manufacturing, pp. 340–353. Springer,
Heidelberg (1999)

6. Freitas, A.A.: In: Klosgen, W., Zytkow, J. (eds.) Handbook of Data Mining and
Knowledge Discovery, ch. 32, pp. 698–706. Oxford University Press, Oxford (2002)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

8. Hersh, W., Buckley, C., Leone, T., Hickman, D.: Ohsumed: an interactive retrieval
evaluation and new large text collection for research. In: Croft, W.B., van Rijsber-
gen, C.J. (eds.) Proceedings of SIGIR-1994, 17th ACM International Conference
on Research and Development in Information Retrieval, Dublin, IE, pp. 192–201.
Springer, Heidelberg (1994)

9. Homaifar, A., Guan, S., Liepins, G.E.: Schema analysis of the traveling salesman
problem using genetic algorithms. Complex Systems 6(2), 183–217 (1992)

A Genetic Algorithm for Text Classification Rule Induction 203

10. Hristakeva, M., Shrestha, D.: Solving the 0/1 Knapsack Problem with Genetic
Algorithms. In: Midwest Instruction and Computing Symposium 2004 Proceedings
(2004)

11. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

12. Lewis, D.D.: Reuters-21578 text categorization test collection. Distribution 1.0
(1997)

13. Lewis, D.D., Hayes, P.J.: Guest editors’ introduction to the special issue on text
categorization. ACM Transactions on Information Systems 12(3), 231 (1994)

14. Michalewicz, Z.: Genetic Algorithms+Data Structures=Evolution Programs, 3rd
edn. Springer, Heidelberg (1999)

15. Noda, E., Freitas, A.A., Lopes, H.S.: Discovering interesting prediction rules with a
genetic algorithm. In: Proc. Congress on Evolutionary Computation (CEC-1999),
July 1999. IEEE, Washington (1999)

16. Pei, M., Goodman, E.D., Punch, W.F.: Pattern discovery from data using genetic
algorithms. In: Proc. 1st Pacific-Asia Conf. Knowledge Discovery and Data Mining
(PAKDD-1997), Febuary 1997. World Scientific, Singapore (1997)

17. Jung, Y., Jog, S.P., van Gucht, D.: Parallel genetic algorithms applied to the
traveling salesman problem. SIAM Journal of Optimization 1(4), 515–529 (1991)

18. Quinlan, J.R.: Generating production rules from decision trees. In: Proc. of IJCAI-
1987, pp. 304–307 (1987)

19. Rullo, P., Cumbo, C., Policicchio, V.L.: Learning rules with negation for text cat-
egorization. In: Proc. of SAC - Symposium on Applied Computing, Seoul, Korea,
March 11-15 2007, pp. 409–416. ACM, New York (2007)

20. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1), 1–47 (2002)

21. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

22. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text cat-
egorization. In: Fisher, D.H. (ed.) Proceedings of ICML-97, 14th International
Conference on Machine Learning, Nashville, US, pp. 412–420. Morgan Kaufmann
Publishers, San Francisco (1997)

	A Genetic Algorithm for Text Classification Rule Induction
	Introduction
	Basic Definitions and Problem Statement
	Olex-GA: A Genetic Algorithm to Solve MAX-F
	Population Encoding
	Fitness Function
	Evolutionary Operators
	The Genetic Algorithm

	Learning Process
	Experimentation
	Benchmark Corpora
	Document Pre-processing
	Experimental Setting
	Experimental Results
	Time Efficiency

	Performance Comparisons
	Olex-GA vs. Olex-Greedy
	Relation to Other Inductive Rule Learners
	Conclusions

